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PLAN DE ’EXPOSE

e Definition of the problem: phonon damping
e Phonon coupling from quantum hydrodynamics
e Convex phonon branch: Beliaev-Landau damping

e Unitary gas (convex branch) at T' = 0: first correction
to Beliaev damping

e Concave phonon branch: Landau-Khalatnikov damping

e Competing processes: BCS quasi-particles



CONTEXTE ET MOTIVATIONS
The system:

e Unpolarised spin-1/2 Fermi gas in the so-called BEC-
BCS crossover. Zero-range T — | interactions with s-
wave scattering length a of arbitrary nonzero value.

e Realised in the lab with cold atoms and a magnetic Fes-
hbach resonance.

e Recent experimental progress: spatially homogeneous
gases can be prepared in flat bottom potentials. More
fundamental questions can be addressed in the lab.

Low temperature limit:

e At zero temperature: BCS pair-condensed gas, entirely
superfluid



e At low temperature

T<<T., T < A/kg, T < mc?/kp

with A = pairing gap, ¢ = sound velocity, one can ignore
the BCS pair-breaking excitation branch and consider
only the phononic excitation branch:
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e The system then reduces to a weakly interacting gas
of phonons (even if the underlying interparticle interac-
tions are strong)

e What is the damping rate I'; of the phonon mode of
wavevector q?



A universal and fondamental limit:

e In this limit, all superfluids with short-range interparti-
cle interactions reduce to a such a gas of phonons.

e Our results shall equally apply to liquid helium 4 and to
the weakly interacting Bose gas.

e As we shall see, the dissipative dynamics depends quan-
titatively on the equation of state of the system and
qualitatively on the sign of the curvature ~.

e In atomic Fermi gases, v is tuned by changing a. In
liquid helium, it is tuned by changing the pressure. In
weakly interacting Bose gases, v > 0 (Bogoliubov).

e In helium, Beliaev-Landau damping (v > 0) observed,
Landau-Khalatnikov damping (v < 0) not yet. Beliaev
damping seen by Davidson in a trapped BEC. In Fermi
gases, damping seen in uniform gas by Zwierlein.



COUPLAGE PHONON-PHONON
In the low-energy limit, given by quantum hydrodynamic
theory of Landau and Khalatnikov (1949).

e T'wo canonically conjugated fields: density p(r) and phase
¢(r) of the superfluid

e Hamiltonian
H = | d°r imv - pv + eg(p)

where eg(p) is the ground state energy density of the

uniform system of density p and the superfluid velocity
field is

9(r) = grad $(r)

e Corresponding Heisenberg equations of motion = Con-
tinuity and Euler’s equations



¢ Linearize them around the spatially homogeneous solu-
tion:
p(r) = p+0p(r)
P(r) = ¢o + 6¢(r)
e Dispersion relation:

d
wqg = c¢q with me? = pﬂ
dp

e Modal expansion:
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where Bq annihilates a phonon of wavevector q.



e Inserting this expansion in this Hamiltonian gives cubic,
quartic, etc, phonon-phonon coupling.

Curvature v of the phonon branch:

e Crucial: determines the leading resonant processes for
phonon damping.

o~y > 0: ¢ — @ Beliaev-Landau

e v < 0 : three-phonon processes and ¢ <— ¢@¢¢ forbidden
by energy-momentum conservation. Leading process is

Q¢ — ¢ Landau-Khalatnikov process.

e To get v one needs a more microscopic theory (no mea-
surement available yet). From Anderson’s RPA (Combescot,
Kagan, Stringari, 2006), we calculated « in 2016:

~ > 0 iff 1/(kpa) > —0.144
and v = 0.084 at unitarity. Only an approximation.



~ > 0: AMORTISSEMENT BELIAEV-LANDAU
Beliaev coupling amplitude from quantum hydrodynam-
ics on the energy shell:
3
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with @ = hw/mc® and

deducible from measured equation of state.
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Fermi Golden rule for direct and inverse processes with
Bose amplification factors and 0 of energy conservation.
Integration over the direction of k: w =k - q/kq

/1 dud(u —ug) =1

—1
with —1 < ug < 1 for v > 0 and ug — 1 when g — 0. For

~v < 0, ug > 1.
Integration over wavenumber k doable analytically. Exact
low-temperature equivalent at fixed g = heq/kpgT:
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where ga(z) is the usual Bose function.



TAUX BELIAEV-LANDAU REDUIT
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GAZ UNITAIRE, T = 0: 1IERE CORRECTION A BELIAEV
Leading contribution I'g G° with § = kg /me. Subleading
one is o §'. First attempt by Bighin, Salanich, Marchetti
and Toigo (2015) is incomplete.

We find four sources of corrections:

1. curvature of the spectrum, involves v assumed > 0

2. correction to Beliaev ¢ < ¢¢ coupling amplitude. Can
be obtained from the Son and Wingate effective field
theory using conformal invariance of the unitary gas.
We find on the energy shell
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It unexpectedly involves the same combination of beyond-
hydrodynamic parameters c¢; and c2 as in the spectrum,
~ o 2¢1 + 3¢, contrarily to the modal amplitudes.



3. We are calculating the decay rate of a resonance (at fixed
total momentum, discrete state |q) coupled to a contin-
uum |k,q — k)). Qualitatively, the Dirac § acquires a
nonzero width o g°. Angular integral becomes

1 <4
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because 1 — ug =~ ¢2.

4. Higher order processes: ¢ «— @@

Only the Beliaev pro-
cess with a single loop
correction (itself of the
Beliaev nature) to the
virtual phonons angu-
lar eigenfrequency con-
tributes at order q7.




Final exact expansion at unitarity (if v > 0):
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where the Bertsch parameter £ = u/ep ~ 0.376 was mea-
sured by Zwierlein et al. (2012). With v = ygpa = 0.084
the overall correction is positive.



v < 0: AMORTISSEMENT LANDAU-KHALATNIKOV
As qualitatively understood by Landau and Khalatnikov:

e The leading process is ¢ «— ¢p¢p: q + q’ — k + K.

e The effective coupling A.g(q,q’; k,k’) is the sum of the
direct coupling (quartic terms in H ) and of the indirect
coupling generated by off-resonant three-phonon pro-
cesses (cubic terms in H ) treated to second order in
perturbation theory (6 diagrams).

e The integral over q’ and k diverges for a linear spec-
trum for aligned wavevectors: so including the curva-
ture term is crucial, and the integral is dominated by
almost-aligned-wavectors configurations.

On a quantitative level:

e Landau and Khalatnikov only calculated the decay rate
in the low-q and the high-q limits.



e They claim that a single diagram dominates in these

limits.

e We disagree with this statement. We find that all dia-
grams have similar contributions, that destructively in-
terfere so our A.g/resp. rate is subleading with respect
to Landau-Khalatnikov by one/two order(s) in q.

e Our conclusion results from a systematic kgT /mc
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expansion at fixed ¢, after rescaling of the angles 8 of q’
and k with respect to q as follows

kT ~
= —17I"/?8
e The result for v < 0:
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where the universal function f‘(ij) is a quadruple integral
with simple limiting behaviors

and

T'(G) ~
()fi—>+oo
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e Understanding the scaling with temperature:

' = /dgq'd3k|A|25(wq + wy — wg — wiy)

If the 4 vectors are aligned, the angular frequency dif-
ference Aw vanishes for a linear spectrum, due to mo-

mentum conservation, and is =~ ¢q

spectrum. So

solid angle
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e The T7-law makes the observation challenging in Fermi
gases (phonon lifetime ~ second). Seems doable with
liquid helium if one can excite = 100 GHz sound.



EFFET DES EXCITATIONS A BANDE INTERDITE
Hors de la limite T' — 0, ces excitations exponentiellemnt
supprimées contribuent a ’amortissement des phonons.

e Dans les fermions : excitations fermioniques par brisure
de paire

e Dans I’He 4 liquide: rotons

ph

ph\ /ph \

BCS BCS BCS
processus de diffusion absorption-emission

Nous calculames les taux d’amortissement correspondants,
en étendant /corrigeant Landau !



DANS UN GAZ UNITAIRE DE FERMIONS
Phonons ¢ = mc/2h a Punitarité a1l =0, v >0, la
plupart des parametres des phonons et des quasi-particules

fermioniques mesurés ou déduits de ’invariance d’échelle.
pu = Eegp with &€ ~ 0.376
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Plein: amor. Beliaev-Landau 3-phonon; Tireté: diffusion ph-BCS; Tireté-pointillé: absorption-emission



DU COTE BCS
Phonons ¢ = mc/2h dans des fermions du c6té BCS
1/kpa—! = —0.389, v ~ —0.30 < 0. Parameétres des

phonons et des quasi-particules fermioniques estimés par
la théorie BCS u/ep ~ 0.809
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Plein: amor. Landau-Khalatnikov 4-phonon; Tireté: diffusion ph-BCS; Tireté-pointillé : absorption-émission



