AMORTISSEMENT DES PHONONS DANS UN GAZ DE FERMIONS SUPERFLUIDE

Y. Castin, A. Sinatra

LKB, École normale supérieure, Paris (France)

H. Kurkjian Université d'Anvers (Belgique)

- EPL 116, 40002 (2016)
- Annalen der Physik 529, 1600352 (2017)
- Phys. Rev. Lett. 119, 260402 (2017)

PLAN DE l'EXPOSÉ

- Definition of the problem: phonon damping
- Phonon coupling from quantum hydrodynamics
- Convex phonon branch: Beliaev-Landau damping
- Unitary gas (convex branch) at T = 0: first correction to Beliaev damping
- Concave phonon branch: Landau-Khalatnikov damping
- Competing processes: BCS quasi-particles

CONTEXTE ET MOTIVATIONS

The system:

- Unpolarised spin-1/2 Fermi gas in the so-called BEC-BCS crossover. Zero-range $\uparrow - \downarrow$ interactions with *s*wave scattering length *a* of arbitrary nonzero value.
- Realised in the lab with cold atoms and a magnetic Feshbach resonance.
- Recent experimental progress: spatially homogeneous gases can be prepared in flat bottom potentials. More fundamental questions can be addressed in the lab.

Low temperature limit:

• At zero temperature: BCS pair-condensed gas, entirely superfluid

• At low temperature

$$T \ll T_c, \ T \ll \Delta/k_B, \ T \ll mc^2/k_B$$

with Δ = pairing gap, c = sound velocity, one can ignore the BCS pair-breaking excitation branch and consider only the phononic excitation branch:

$$\omega_{q} \mathop{=}\limits_{q
ightarrow 0} cq \left[1+rac{\gamma}{8}\left(rac{\hbar q}{mc}
ight)^{2}+O(q^{4}\ln q)
ight]$$

- The system then reduces to a weakly interacting gas of phonons (even if the underlying interparticle interactions are strong)
- What is the damping rate Γ_q of the phonon mode of wavevector q?

A universal and fondamental limit:

- In this limit, all superfluids with short-range interparticle interactions reduce to a such a gas of phonons.
- Our results shall equally apply to liquid helium 4 and to the weakly interacting Bose gas.
- As we shall see, the dissipative dynamics depends quantitatively on the equation of state of the system and qualitatively on the sign of the curvature γ .
- In atomic Fermi gases, γ is tuned by changing a. In liquid helium, it is tuned by changing the pressure. In weakly interacting Bose gases, $\gamma > 0$ (Bogoliubov).
- In helium, Beliaev-Landau damping $(\gamma > 0)$ observed, Landau-Khalatnikov damping $(\gamma < 0)$ not yet. Beliaev damping seen by Davidson in a trapped BEC. In Fermi gases, damping seen in uniform gas by Zwierlein.

COUPLAGE PHONON-PHONON

In the low-energy limit, given by quantum hydrodynamic theory of Landau and Khalatnikov (1949).

- Two canonically conjugated fields: density $\hat{\rho}(\mathbf{r})$ and phase $\hat{\phi}(\mathbf{r})$ of the superfluid
- Hamiltonian

$$\hat{H} = \int d^3r \left[rac{1}{2} m \hat{\mathrm{v}} \cdot \hat{
ho} \hat{\mathrm{v}} + e_0(\hat{
ho})
ight]$$

where $e_0(\rho)$ is the ground state energy density of the uniform system of density ρ and the superfluid velocity field is

$$\hat{\mathrm{v}}(\mathrm{r}) = rac{\hbar}{m} \mathrm{grad}\, \hat{\phi}(\mathrm{r})$$

• Corresponding Heisenberg equations of motion = Continuity and Euler's equations • Linearize them around the spatially homogeneous solution:

$$\hat{
ho}(\mathbf{r}) =
ho + \delta \hat{
ho}(\mathbf{r})$$

 $\hat{\phi}(\mathbf{r}) = \phi_0 + \delta \hat{\phi}(\mathbf{r})$

• Dispersion relation:

$$\omega_q = cq ~~~ {
m with} ~~ mc^2 =
ho {d \mu_0 \over d
ho}$$

• Modal expansion:

$$\delta \hat{
ho}(\mathbf{r}) = rac{1}{\mathcal{V}^{1/2}} \sum_{\mathbf{q} \neq 0} \left(rac{\hbar q
ho}{2mc}
ight)^{1/2} (\hat{b}_{\mathbf{q}} + \hat{b}_{-\mathbf{q}}^{\dagger}) e^{i\mathbf{q}\cdot\mathbf{r}}$$
 $\delta \hat{\phi}(\mathbf{r}) = rac{-i}{\mathcal{V}^{1/2}} \sum_{\mathbf{q} \neq 0} \left(rac{mc}{2\hbar
ho q}
ight)^{1/2} (\hat{b}_{\mathbf{q}} - \hat{b}_{-\mathbf{q}}^{\dagger}) e^{i\mathbf{q}\cdot\mathbf{r}}$

where \hat{b}_{q} annihilates a phonon of wavevector q.

• Inserting this expansion in this Hamiltonian gives cubic, quartic, etc, phonon-phonon coupling.

Curvature γ of the phonon branch:

- Crucial: determines the leading resonant processes for phonon damping.
- $\gamma > 0$: $\phi \leftrightarrow \phi \phi$ Beliaev-Landau
- $\gamma < 0$: three-phonon processes and $\phi \leftrightarrow \phi \phi \phi$ forbidden by energy-momentum conservation. Leading process is $\phi \phi \leftrightarrow \phi \phi$ Landau-Khalatnikov process.
- To get γ one needs a more microscopic theory (no measurement available yet). From Anderson's RPA (Combescot, Kagan, Stringari, 2006), we calculated γ in 2016:

$$\gamma > 0 \,\, {
m iff} \,\, 1/(k_{
m F} a) > -0.144$$

and $\gamma = 0.084$ at unitarity. Only an approximation.

 $\gamma > 0$: AMORTISSEMENT BELIAEV-LANDAU Beliaev coupling amplitude from quantum hydrodynamics on the energy shell:

$$\mathcal{A}(\mathbf{q};\mathbf{k},\mathbf{k}'=\mathbf{q}-\mathbf{k}) = \frac{3}{\sqrt{32}}(1+\Lambda)(\check{\omega}_{q}\check{\omega}_{k}\check{\omega}_{k'})^{1/2}$$

with $\check{\omega}=\hbar\omega/mc^2$ and

$$\Lambda = rac{
ho}{3} rac{d^2 \mu}{d
ho^2} \left(rac{d\mu}{d
ho}
ight)^{-1}$$

deducible from measured equation of state.

Fermi Golden rule for direct and inverse processes with Bose amplification factors and δ of energy conservation. Integration over the direction of k: $u = \mathbf{k} \cdot \mathbf{q}/kq$

$$\int_{-1}^1 du\,\delta(u-u_0)=1$$

with $-1 < u_0 < 1$ for $\gamma > 0$ and $u_0 \rightarrow 1$ when $q \rightarrow 0$. For $\gamma < 0, u_0 > 1$.

Integration over wavenumber k doable analytically. Exact low-temperature equivalent at fixed $\tilde{q} = \hbar c q / k_B T$:

$$\Gamma_{q} \mathop{\sim}\limits_{T
ightarrow 0} rac{9(1+\Lambda)^{2}mc^{2}}{32\pi} rac{mc^{2}}{\hbar
ho} \left(rac{mc}{\hbar}
ight)^{3} \left(rac{k_{B}T}{mc^{2}}
ight)^{5} ilde{\Gamma}(ilde{q})$$

$$\tilde{\Gamma}(\tilde{q}) = \frac{\tilde{q}^5}{30} + 96[\zeta(5) - g_5(e^{-\tilde{q}})] - 48\tilde{q}g_4(e^{-\tilde{q}}) + 8\tilde{q}^2[\zeta(3) - g_3(e^{-\tilde{q}})]$$

where $g_{\alpha}(z)$ is the usual Bose function.

TAUX BELIAEV-LANDAU RÉDUIT

- GAZ UNITAIRE, T = 0: 1ERE CORRECTION À BELIAEV Leading contribution $\Gamma_q \propto \check{q}^5$ with $\check{q} = \hbar q/mc$. Subleading one is $\propto \check{q}^7$. First attempt by Bighin, Salanich, Marchetti and Toigo (2015) is incomplete.
 - We find four sources of corrections:
 - 1. curvature of the spectrum, involves γ assumed > 0
 - 2. correction to Beliaev $\phi \leftrightarrow \phi \phi$ coupling amplitude. Can be obtained from the Son and Wingate effective field theory using conformal invariance of the unitary gas. We find on the energy shell

$$\mathcal{A}(\mathbf{q};\mathbf{k},\mathbf{k'}) = \frac{\sqrt{2}}{3} (\check{\omega}_q \check{\omega}_k \check{\omega}_{k'})^{1/2} \left[1 - \frac{7\gamma}{32} (\check{\omega}_q^2 + \check{\omega}_k^2 + \check{\omega}_{k'}^2) \right]$$

It unexpectedly involves the same combination of beyondhydrodynamic parameters c_1 and c_2 as in the spectrum, $\gamma \propto 2c_1 + 3c_2$, contrarily to the modal amplitudes. 3. We are calculating the decay rate of a resonance (at fixed total momentum, discrete state $|q\rangle$ coupled to a continuum $|k, q - k\rangle$). Qualitatively, the Dirac δ acquires a nonzero width $\propto q^5$. Angular integral becomes

$$\int_{-1}^{1} du \frac{\check{q}^4/\pi}{(u-u_0)^2 + (\check{q}^4)^2} \stackrel{=}{=} 1 + C\check{q}^2 + o(\check{q^2})$$

because $1 - u_0 \approx \check{q}^2$.

4. Higher order processes: $\phi \leftrightarrow \phi \phi \phi$

Only the Beliaev process with a single loop correction (itself of the Beliaev nature) to the virtual phonons angular eigenfrequency contributes at order q^7 . Final exact expansion at unitarity (if $\gamma > 0$):

$$egin{aligned} \Gamma_{q} &= rac{2mc^{2}}{\check{q}
ightarrow 0} \left(rac{mc}{\hbar
ho^{1/3}}
ight)^{3} rac{\check{q}^{5}}{30} \left[1 - rac{25}{112} \gamma \check{q}^{2} + rac{22\sqrt{3} \xi^{3/2}}{1701 \gamma} \check{q}^{2} + o(\check{q}^{2})
ight] \end{aligned}$$

where the Bertsch parameter $\xi = \mu/\epsilon_{\rm F} \simeq 0.376$ was measured by Zwierlein et al. (2012). With $\gamma = \gamma_{\rm RPA} = 0.084$ the overall correction is positive.

$\gamma < 0$: AMORTISSEMENT LANDAU-KHALATNIKOV As qualitatively understood by Landau and Khalatnikov:

• The leading process is $\phi\phi \leftrightarrow \phi\phi$: $q + q' \leftrightarrow k + k'$.

- The effective coupling $\mathcal{A}_{\text{eff}}(q,q';k,k')$ is the sum of the direct coupling (quartic terms in \hat{H}) and of the indirect coupling generated by off-resonant three-phonon processes (cubic terms in \hat{H}) treated to second order in perturbation theory (6 diagrams).
- The integral over q' and k diverges for a linear spectrum for aligned wavevectors: so including the curvature term is crucial, and the integral is dominated by almost-aligned-wavectors configurations.

On a quantitative level:

 \bullet Landau and Khalatnikov only calculated the decay rate in the low- \tilde{q} and the high- \tilde{q} limits.

- They claim that a single diagram dominates in these limits.
- We disagree with this statement. We find that all diagrams have similar contributions, that destructively interfere so our $\mathcal{A}_{\text{eff}}/\text{resp.}$ rate is subleading with respect to Landau-Khalatnikov by one/two order(s) in \tilde{q} .
- Our conclusion results from a systematic $k_B T/mc^2 \rightarrow 0$ expansion at fixed \tilde{q} , after rescaling of the angles θ of q' and k with respect to q as follows

$$heta=rac{k_BT}{mc^2}|\gamma|^{1/2} ilde{ heta}$$

• The result for $\gamma < 0$:

$$rac{\hbar\Gamma_q}{mc^2} \, \, \mathop{f{fixed}}\limits_{T o 0}^{ ilde q} \, \, rac{81(1+\Lambda)^4}{256\pi^4|\gamma|} \left(\!rac{k_BT}{mc^2}\!
ight)^7 \left(\!rac{mc}{\hbar
ho^{1/3}}\!
ight)^6 ilde \Gamma(ilde q)$$

where the universal function $\tilde{\Gamma}(\tilde{q})$ is a quadruple integral with simple limiting behaviors

$$ilde{\Gamma}(ilde{q}) \sim_{ ilde{q}
ightarrow 0} rac{16\pi^5}{135} ilde{q}^3 \hspace{0.5cm} ext{and} \hspace{0.5cm} ilde{\Gamma}(ilde{q}) \sim_{ ilde{q}
ightarrow +\infty} rac{16\pi\zeta(5)}{3} ilde{q}^2$$

• Understanding the scaling with temperature:

$$\Gamma pprox \int d^3q' d^3k |\mathcal{A}|^2 \delta(\omega_q + \omega_{q'} - \omega_k - \omega_{k'})$$

If the 4 vectors are aligned, the angular frequency difference $\Delta \omega$ vanishes for a linear spectrum, due to momentum conservation, and is $\approx q^3 \approx T^3$ for a curved spectrum. So

$$\Gamma pprox [T^3 imes \underbrace{T^2}_{ ext{solid angle}}]^2 \left| \frac{T^{3/2} imes T^{3/2}}{T^3}
ight|^2 rac{1}{T^3} = T^7$$

• The T^7 -law makes the observation challenging in Fermi gases (phonon lifetime \approx second). Seems doable with liquid helium if one can excite $\approx 100 \text{ GHz}$ sound.

EFFET DES EXCITATIONS À BANDE INTERDITE Hors de la limite $T \rightarrow 0$, ces excitations exponentiellemnt supprimées contribuent à l'amortissement des phonons.

- Dans les fermions : excitations fermioniques par brisure de paire
- Dans l'He 4 liquide: rotons

processus de diffusion absorption-emission Nous calculâmes les taux d'amortissement correspondants, en étendant/corrigeant Landau ! DANS UN GAZ UNITAIRE DE FERMIONS Phonons $q = mc/2\hbar$ à l'unitarité $a^{-1} = 0$, $\gamma > 0$, la plupart des paramètres des phonons et des quasi-particules fermioniques mesurés ou déduits de l'invariance d'échelle. $\mu = \xi \epsilon_{\rm F}$ with $\xi \simeq 0.376$

Plein: amor. Beliaev-Landau 3-phonon; Tireté: diffusion ph-BCS; Tireté-pointillé: absorption-emission

DU CÔTÉ BCS

Phonons $q = mc/2\hbar$ dans des fermions du côté BCS $1/k_F a^{-1} = -0.389$, $\gamma \simeq -0.30 < 0$. Paramètres des phonons et des quasi-particules fermioniques estimés par la théorie BCS $\mu/\epsilon_F \simeq 0.809$

Plein: amor. Landau-Khalatnikov 4-phonon; Tireté: diffusion ph-BCS; Tireté-pointillé : absorption-émission